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A B S T R A C T   

This study aimed to develop a hybrid control algorithm for semiactive control devices to effectively control the 
drift caused by seismic loads in the superstructure of an isolated multispan bridge. First, bridge behavior was 
simulated using the Newmark method to select a semiactive control device that would be appropriate for the 
bridge structure. An optimal control force was selected to control the displacement and relative displacement of 
each superstructure element. Next, an equation of motion that employed a stochastic linearization capable of 
representing the nonlinearity beyond the structural linear limits was used. Further, a Bouc–Wen model was 
designed to simulate the nonlinearity of the structure model and the control device to configure the control logic. 
A hybrid control algorithm was developed to overcome the disadvantages of the clipped-optimal and Lyapunov 
control algorithms, which show excellent control effectiveness but experience problems during nonlinear control 
along with extreme manual control problems owing to their use of the Heaviside step function. The two control 
algorithms were used individually to make judgments, and the results of each were used to produce a three-stage 
signal (min., max., median). The performance of the proposed control method with the developed algorithm was 
verified through experimental tests. The developed hybrid control algorithm improved the performance of the 
two individual control algorithms and effectively controlled the behavior of multispan bridges.   

1. Introduction 

Infrastructure facilities are threatened by various natural disasters. 
In particular, bridges are at risk of damage and even collapse. These risks 
arise owing to pounding in the superstructure or large external forces 
such as seismic loads, especially if these issues are not considered during 
design. Currently, advanced construction technologies are enabling the 
construction of more stable bridges. Nonetheless, old-fashioned multi
span bridges consisting of two superstructures arranged in series and 
centered on piers remain in wide use even today. Most such bridges are 
made of concrete (or reinforced concrete), and expansion joints are 
placed in the connecting parts of the superstructure to minimize damage 
due to temperature changes. The intervals between the superstructure 
sections created by these expansion joints are a source of pounding 
between adjacent elements; such pounding is usually caused by the 
longitudinal drift occurring in the superstructure owing to the effect of 
external loads such as earthquakes. Pounding due to the drift of bridge 
superstructures was observed during the 1989 Lome Prita earthquake, 
1994 Northridge earthquake, and 2001 Bhuj earthquake [1–3]. By 

contrast, large-scale pounding did not occur in the superstructure ele
ments during the 2017 Pohang earthquake and the 2011 Great East 
Japan earthquake; superstructure drift only resulted in some deforma
tion and damage of the isolation devices [4,5]. 

Bridges are important pathways for response and recovery opera
tions when earthquakes occur. If a bridge superstructure suffers drift 
because of seismic loads, access to the bridge may be limited, thereby 
hampering these operations. Domaneschi and Martinelli discussed the 
resilience of seismic control solutions for bridges through case studies 
and confirmed that the application of control devices had positive effects 
on structural restoration [6]. Other studies have investigated the use of 
various control devices to reduce drift in bridge superstructures, such as 
steel restrainers, metallic dampers, viscoelastic (VE) dampers, and 
magnetorheological (MR) dampers [7–11]. Among these devices, MR 
dampers are often used as semiactive control devices for controlling 
bridge vibrations by regulating the current input [12–14]. Ruan
grassamee and Kawashima, Guo et al., and Sheikh et al. conducted 
representative experimental and analytical studies of the control of 
bridge vibrations, specifically, the control of bridge pounding, through 
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the use of MR dampers [9,15,16]. Guo et al. studied three types of MR 
damper performance, namely passive-off, passive-on, and semiactive 
control [15]. Sheikh et al. applied a bang–bang control algorithm to 
semiactive control [16]. 

The advantages of MR dampers are that they allow for smoother 
control than a friction-type damping device does, and their control force 
can be adjusted according to the control signals. However, they are 
disadvantageous because they require an external power source, and it is 
important to carefully select a control algorithm as it strongly influences 
their performance. Therefore, some studies investigated various control 
algorithms to obtain the optimal MR damper performance. Heo et al. 
experimentally evaluated a control algorithm based on the Lyapunov 
direct method and another based on the clipped-optimal control algo
rithm to control vibrations in adjacent bridge decks via a semiactive 
control device [17]. Both algorithms are often applied to MR dampers 
for vibration control, and their performance has been evaluated in 
various studies. Both algorithms are effective in linear systems but not in 
nonlinear one, such as the nonlinear behavior of isolated devices 
occurring owing to seismic loads. Further, these algorithms use overly 
conservative parameters that can induce an excessive system response 
[18,19]. Finally, these algorithms cannot easily control nonlinear be
haviors when the voltage input is limited to simply 0 or 1 [18,20]. 
Therefore, a more improved algorithm must be developed for control
ling nonlinear behaviors. 

In this light, the present study proposes a control method in which a 
semiactive control device is used to protect multispan bridges from 
damage and collapse by effectively controlling the longitudinal drift 
caused by pounding between adjacent superstructure elements during 
earthquakes. This method is verified analytically and experimentally. 
This study also develops a hybrid control algorithm that can overcome 
the disadvantages of the Lyapunov and the clipped-optimal control al
gorithms that are often used for drift control. To verify the validity of the 
proposed control method with the developed hybrid control algorithm, 
shaking table tests were performed on a multispan isolated bridge 
model. Finally, the differences between this hybrid control algorithm 
and existing control algorithms were examined; the hybrid control al
gorithm was confirmed to effectively control drift in multispan isolated 
bridges. 

2. Multispan bridge drift control methods and assumptions 

2.1. Multispan isolated bridge drift control methods 

Generally, a bridge consists of a deck that is a part of its super
structure, piers, abutments that support the deck, and isolation equip
ment that is installed to prevent the substructure’s vibrations from being 
transferred to the superstructure. However, even in bridges with 
installed isolation equipment, pounding can occur between superstruc
ture elements owing to the effects of nonuniform ground motion. 
Therefore, additional dampers are used to prevent pounding and 
collapse due to vibrations in the superstructure. Dampers, one such 
additionally installed control device, are used to support the piers and 
abutments to control the movement of the superstructure. Dampers, 
when configured suitably, can successfully control the vibrations in the 
superstructure when large forces such as earthquakes act on the bridge. 
However, damage may occur when an additional force that has not been 
reflected in the design acts on the piers and abutments. 

Previous studies developed and experimentally evaluated the per
formance of a drift control method that would not have an additional 
effect on the piers while connecting the spans by a semiactive control 
device to use the behavior energy of adjacent superstructure elements in 
the structure’s overall drift control [17]. The control logic of the pro
posed method considered the control device’s nonlinearity but not the 
target structure’s nonlinearity. This study extends previously proposed 
methods and presents a multispan isolated bridge control method that 
accounts for the nonlinearity of the structure. 

Fig. 1 shows a multispan bridge drift control method. Here, x is the 
displacement relative to the ground displacement of each superstructure 
component; ẍg is the ground acceleration; m, c, and k are the bridge’s 
mass, damping, and stiffness, respectively; z is the hysteresis factor; and 
FMR is the semiactive control device’s control force. Normal lineariza
tion, which is the basis of the motion equations used to control struc
tures, is used to complete the system based on a linear stiffness that 
depends on the initial stiffness of each structural element. Because this 
type of linearization ignores the structure’s nonlinearity, an inaccurate 
response may be produced when drift occurs owing to a load that ex
ceeds the material’s limit. To overcome the limitations of this type of 
linearization, the proposed control method includes a structure model 
that is based on stochastic linearization. Stochastic linearization ex
presses the nonlinear history elements as equivalent time-invariant 
models by minimizing the error that occurs in the linearization pro
cess [21]. The motion equation that uses a stochastic linearization 
strategy for the multispan bridge system shown in Fig. 1 is as follows: 

MÜ+CdU̇ + KuU + KzZ = − Mẍg (1) 

Here, M and Cd are the mass and damping, respectively; Ku and Kz 

are the linear and the nonlinear stiffness matrix, respectively; and U, Z 
and ẍg are the displacement vector ([x1, x2, x3]), hysteresis element 
vector, and ground acceleration in Fig. 1, respectively. The Z matrix 
includes the hysteresis element ([z1, z2, z3]) marked in Fig. 1 and the 
history element of the semiactive control device ([z4, z5]). The hysteresis 
element z is an evolutionary variable defined by the Bouc–Wen differ
ential equation shown in Eq. (2). 

ż=Aiẋi − βi

⃒
⃒
⃒ẋi

⃒
⃒
⃒zi − γiẋi|zi| (2) 

Here, the subscripts i(= 1, ⋅ ⋅ ⋅, 5) represent three spans (A, B, and C) 
and two dampers (FMR1 and FMR2), respectively. ẋ is the velocity, and A, 
β, and γ are parameters that control the shape of the loop. Eq. (2) de
pends only on the velocity and hysteresis; therefore, it can be expressed 
using the following equivalent linearization equation: 

żi = − Ciẋi − Kizi (3) 

Here, Ci and Ki are linearized parameters of velocity and hysteresis 
terms, respectively. To linearize the nonlinear elements that are 
included in the motion equation by using the stochastic linearization 
strategy of Eq. (1), the multispan isolated bridge’s superstructure and 
the Bouc–Wen model (semiactive control device model) were used, and 
then, the convergence process was performed to complete the linearized 
bridge model in Eq. (4) [22,23]. 

Ẋ=AstateX + Fe (4) 

Here, X is a state vector that consists of [U; U̇; Z], Fe(= [0 − ẍg 0]
′

) is 
an external force vector by ẍg, and Astate is the system matrix as expressed 
in Eq. (5). 

Astate =

⎡

⎣
0 I 0
− M− 1Ku − M− 1Cd − M− 1Kz
0 Cb Kb

⎤

⎦ (5) 

Here, Cb and Kb are linearized parameters for the system’s speed and 
history elements, respectively. These parameters are repeatedly 
adjusted until the displacement responses obtained from experiments 
performed on the real structure correspond to the simulated ones for the 
whole three-span bridge structure by inputting the initial values ac
quired from the dampers. 

2.2. Assumptions of drift control for a multispan bridge 

The major factors influencing the pounding of a bridge superstruc
ture caused by external loads such as earthquakes are the differences in 
the dynamic characteristics of adjacent structures and the 
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multidimensional behavior of the ground. Among those factors, this 
study focused on the differences in the dynamic characteristics of 
adjacent structures. Therefore, the ground movement was assumed to be 
transferred along the longitudinal direction of the bridge. This study did 
not consider the up and down impacts to the bridge’s superstructure and 
substructure, which includes the piers and abutments that support the 
superstructure; the lateral external forces that act on the bridge; and the 
bridge’s lateral behavior. 

As mentioned before, an isolated bridge with isolated devices com
prises a substructure that includes the piers and foundations and a su
perstructure that includes the deck of the bridge. Isolation devices are 
installed between the superstructure and the substructure to isolate the 
transfer of vibrations between them and to support the superstructure. 
The mass affects the behavior of the bridge and is mainly concentrated in 
the superstructure. The stiffness of the isolation device is very small than 

that of the substructure; therefore, the response of the bridge can be 
assumed to be determined by the behavior of the superstructure. 

In this study, these assumptions were used to create a multispan 
bridge model that has three continuous superstructure spans, as shown 
in Fig. 2. 

As shown in Fig. 2(a), the multispan isolated bridge model is a 
continuous bridge with three spans that are longitudinally continuous, 
and abutments are installed at the left and right ends of the bridge. Span 
B, which is 2.5 times larger than spans A and C, was installed to examine 
the pounding between adjacent superstructure components that can 
occur owing to differences in the dynamic characteristics of the adjacent 
structures. As shown in Fig. 2(b), the bridge superstructure has two 
girders (longitudinal I-beams) placed below 100 mm thick reinforced 
concrete slabs; these beams resist bending in the slabs. A cross beam was 
placed between the longitudinal I-beams to prevent the deformation of 

Fig. 1. Connecting multispan bridge’s control devices.  

Fig. 2. Model bridge for multispan bridge drift control.  
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the superstructure. This superstructure was placed above an isolation 
device (rubber bearing), and a load cell was used to measure the control 
force of the isolation device. Each span was supported by four rubber 
bearings to resist a total shear strength of 240 kN/m. The substructure 
was designed to only the support the superstructure. In the multispan 
bridge shown in Fig. 2, spans A and C have a length of 2.3 m and span B 
has a length of 6 m. The weights of the spans including the jigs for 
installing the MR dampers are 1490, 3520, and 1520 kg for spans A, B, 
and C, respectively. Each span is supported by four rubber bearings. As 
assumed previously, the response of the bridge is determined by the 
bridge superstructure elements (spans). Therefore, the piers of the 
substructure were simply built to support the superstructure. Structures 
that simulate abutments were installed at the left and right ends of the 
multispan isolated bridge, and the abutment impacts of spans A and C 
were considered. 

3. Relationship between semiactive control device and control 
algorithm 

3.1. Calculating optimal control force 

This study proposes a control method that connects adjacent super
structure elements through semiactive control devices to prevent 
pounding and to control the vibrations in a multispan isolated bridge. 
This control method does not apply an additional external force to the 
piers or abutments. However, when the control force of the control 
device is stronger than the behavior energy of the superstructure due to 
the external force, the multiple superstructures connected to the control 
device may together exhibit the same large movement as one structure. 
This type of unified drift can prevent pounding between adjacent su
perstructure elements; however, it serves to increase the bridge’s overall 
behavior. Therefore, this study calculated the optimal control force 
required for the effective control of the bridge before selecting the 
semiactive control device. Here, the optimum control force refers to the 
maximum control force in a state where no harmful behavior occurs 
owing to the application of the control device. To calculate the optimal 
control force, this study used a normal Newmark method function (a 
multiple-degree-of-freedom (MDOF) system time integration) that uti
lizes an adaptive control-style structural simulation. A normal algorithm 
for structural dynamics was used. The seismic loads of the Kobe seismic 
waves (measured by the KJMA observatory station in 1995), which are 
typical of near-field seismic loads, and the El Centro seismic waves 
(measured as PGA 0.313 g at the 117 El Centro Array #9 in 1940), which 
are typical of far-field seismic loads, were used as the external forces for 
the simulation. The structure for the simulation was programmed based 
on the equation of motion (Eq. (1)), and the masses of spans A and B 
were used as the actual measured values described in Section 2.2. 
Because the mass of span C is only slightly different from that of span A, 
the same value as that of span A was used. The semiactive control device 
model and the structure stiffness model were applied to the 30 kN MR 
damper Bingham plastic model and the rubber-bearing Bouc–Wen 
model proposed by Heo et al. [24]. As shown in Fig. 2(a), in the mul
tispan bridge model, the two spans (A and C) located around span B in 
the center have the same mass and stiffness. Therefore, the simulation 
was performed under the assumption that spans A and C show the same 
behavior when an external force is applied. Here, because the rigidity of 
the structure depends on the characteristics of the base isolation device 
below the superstructure, only the behavior of the base isolation device 
was considered. The simulation was divided into a basic structure state 
in which the control device was not installed, a state in which adjacent 
superstructure elements were connected by the control device and four 
currents (0, 1, 2, and 3 A) were supplied, and a rigid state in which 
adjacent superstructure elements were connected by rigid bodies. The 
simulation confirmed that the drift of each span was caused by the input 
seismic loads. Matlab code was used to operate the simulation program, 
and Table 1 lists the calculated simulation results. 

As observed in Tables 1 and 2, when the 30 kN MR damper was used 
to perform multispan bridge drift control, the relative displacement was 
reduced by more than 70% in the 0 A state, that is, when current was not 
supplied, compared with the basic structure state (BARE). When a cur
rent of 1 A or more was supplied, it was predicted that the three inde
pendent bridges would show unified behavior similar to that in the rigid 
state. Therefore, the 30 kN MR damper was found to be unsuitable when 
confirming the performance using the control algorithm for the semi
active control device for multispan bridge control. 

Because of these simulation results, an additional simulation was 
performed to find the optimal control force that is suitable for drift 
control in this study’s target multispan isolated bridge model. In this 
additional simulation, the damping value of the MR damper was 
increased and the structure’s behavior was examined. The graph in 
Fig. 3 shows the changes in displacement that occurred under each 
simulation condition. 

In the simulation, the damping value of the MR damper increased 
from 0 to 35 ton/s in 5 ton/s intervals. In the acquired data, the relative 
displacement between spans A and B was observed. The graph in Fig. 3 
(a) shows the trend of decrease (amount of decrease in current stage 
compared with all stages) in the relative displacement for each condition 
(damping value) as the damping value of the MR damper was increased. 
This graph shows that the use of a damping value resulted in the relative 
displacement decreasing by 12 mm compared with that when the 
damping value was 0. However, as the damping value increased, the 
relative displacement decreased by a smaller amount than that under the 
previous condition. For a damping value of 10 ton/s or more, the 
decrease was less than 5 mm, and at 30 ton/s or more, the decrease was 
less than 1 mm. In other words, when a damping value of 30 ton/s or 
more was used, the relative displacement between spans A and B was 
predicted to show a unified behavior in which no further reduction 
occurred. The graphs in Fig. 3 (b)–(d) show the simulation results in 
which the MR damper’s damping value was increased in 1 ton/s in
tervals from 0 to 12 ton/s to observe the changes in the structure’s 
behavior at damping values below 10 ton/s. Graph (b) shows the trend of 
decrease in the relative displacement between spans A and B. This graph 
shows that when a damping value of 7 ton/s or more was used, the 
relative displacement decreased by a markedly smaller amount than that 
under the previous condition (damping value: 6 ton/s). Graph (d) shows 
a similar trend for the decrease in the displacement of span B at each 

Table 1 
Simulation results of Kobe earthquake.  

Estimation Results 
Control Case 

Displacement (mm)  Force (N)  

Each Span Relative 

Span A Span B Span C A–B & B–C A–B & B–C 

BARE 7.7974 37.458 7.7974 38.3326 0 
0A 12.385 15.811 12.385 11.1409 4824.1938 
1A 20.28 20.411 20.28 0.85678 9911.0885 
2A 20.526 20.571 20.28 0.41029 10277.377 
3A 20.594 20.628 20.594 0.32049 10314.194 

RIGID 20.619 20.649 20.619 0.28743 10350.765  

Table 2 
Simulation results of El Centro earthquake.  

Estimation 
Results 

Control Case 

Displacement (mm)  Force (N)  

Each Span Relative 

Span A Span B Span C A–B & B–C A–B & B–C 

BARE 10.5888 59.2687 10.5888 64.5471 0 
0A 12.9997 13.996 12.9997 8.6434 5148.9289 
1A 15.7595 15.8538 15.7595 0.56273 7888.3863 
2A 15.942 15.9982 15.942 0.32545 7988.7637 
3A 15.9979 16.042 15.9979 0.25444 8019.3153 

RIGID 16.0187 16.0582 16.0187 0.22829 8030.627  
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stage. Graph (c) shows the behavior changes in span (A) under each 
condition. In span A, the amount of increase in displacement compared 
with that in the previous condition began to decrease as the damping 
value of the MR damper increased. However, for a damping value of 6 
ton/s or more, the amount of increase in displacement began to increase 
again. From these simulation results, it is predicted that setting the MR 
damper’s damping value at 6 ton/s or more may positively affect the 
relative displacement between spans A and B and the reduction in 
displacement of span B; however, a problem occurs at the value where 
span A’s displacement increases again. The optimal control force of the 
MR damper was found to be that when a damping value of 6 ton/ s was 
used. 

Table 3 lists the simulation results in which the MR damper’s 
damping value was increased in 1 ton/s intervals from 0 to 12 ton/ s. This 
table shows that the MR damper’s maximum control force was 2.164 Nat 
a damping value of 6 ton/s. 

3.2. Semiactive control device 

To perform appropriate control according to the current state of the 

bridge, a control device that can adjust the control force is needed. For 
the control device, this study selected an MR damper that can adjust the 
control force according to external control signals (current) to control 
the vibrations in a multispan bridge. For the MR damper, this study 
selected the cylinder-type RD-8040-1 model (LORD) with an allowed 
stroke displacement of ±27.5 mm and a maximum control force of 2 kN 
that can match the optimal control force calculation results. Its advan
tage is that the control force can be adjusted easily by varying the cur
rent; however, its disadvantage is that it is vulnerable to the effects of the 
temperature caused by the application of the current. To develop the 
selected MR damper model, its dynamic characteristics were experi
mentally tested using a spring testing device. The tests were performed 
at a maximum displacement of ±10 mm, 1 Hz, and 0.0628 m/s under 
four conditions according to the supplied current (0, 0.5, 1, and 1.5 A). 
Further, the MR damper can intermittently provide current at 2 A, and 
additional tests were performed at a current of 2 A. During the tests, 
stable current was supplied to the damper using a PMC 18-3A. The tests 
measured the damper’s control force data and stroke displacement. The 
control force is the output value of the load cell (DBBP-2t). The 
displacement is the output value of the sensor installed in the testing 
device itself. Fig. 4 shows a force–displacement graph and a force–speed 
graph according to the changes in the current supplied to the MR 
damper. This graph shows that the control force increased according to 
the current supplied to the MR damper selected in this study. However, 
at a current of 1.0 A or more, the range of increase in the control force 
was reduced. 

A control device model that used the control algorithm was devel
oped based on the data acquired from the performance test results of the 
MR damper. The MR damper model was developed using the Bouc–Wen 
model; Tables 4 and 5 list the parameters of the developed model. 

Each parameter in Tables 4 and 5 was determined using a global 
optimization method based on gradient descent, which minimizes the 
error cost function between the experimental and simulation results. 
Finally, the control force (FMR) of the MR damper is calculated as 

FMR = αẋMR ẋ + αzMR z (6) 

Here, ẋ is the velocity of the hysteresis component; z is the 

Fig. 3. Simulation results obtained with different damping values.  

Table 3 
Simulation results according to damping values used (El Centro).  

Estimation 
Results 

Damping Value 

Displacement (mm)  Force (N)  

Each Span Relative 

Span A Span B Span C A–B & B–C A–B & B–C 

0 7.7974 37.4580 7.7974 38.3326 0 
1 7.8719 34.6969 7.8719 35.1221 466.57 
2 7.9227 32.2221 7.9227 32.3753 835.63 
3 7.9662 29.9649 7.9662 29.8919 1203.9 
4 8.0061 27.9094 8.0061 27.6293 1577.3 
5 8.0434 27.1870 8.0434 25.5610 1876.7 
6 8.0797 26.4481 8.0797 23.8221 2164.1 
7 8.1163 25.6991 8.1163 23.0351 2422.8 
8 8.1550 24.9471 8.1550 22.2530 2656.5 
9 8.1970 24.1998 8.1970 21.4809 2868.7 
10 8.2433 23.4635 8.2433 20.7235 3062.3  
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evolutionary variable defined by Eq. (2); and αẋMR and αzMR are respec
tively the damping and hysteresis components of MR dampers and are 
calculated by applying the Bouc–Wen model parameters in Table 5 to 
the input current function given by the following equation: 

αẋMR = αẋMR0 + icαẋMR1 + i2
cαẋMR2

αzMR = αzMR0 + icαzMR1 + i2
cαzMR2

(7) 

Here, ic is the input current supplied to the MR damper. In this study, 
input currents of 0, 1, and 2 A were used. Table 5 and Fig. 5 show the 
experimental and simulation results when a current of 1 A is supplied to 
the MR damper. 

Fig. 5(a) and (b) respectively show the force–displacement and 
force–velocity responses, which are consistent with the results of the 
Bouc–Wen model. 

3.3. Control algorithm 

To perform drift control effectively, it is necessary to provide a 
control device and a control algorithm based on the required control 
condition of the bridge. To develop a new effective hybrid control al
gorithm, the Lyapunov stability-based control algorithm and the 
clipped-optimal control algorithm [25,26] are adopted; previous studies 
have confirmed these to be effective. The control effectiveness of both 
algorithms was examined to develop a control strategy that combines 
the two. 

The Lyapunov stability-based control algorithm is a control strategy 
that adjusts the control force using Eq. (8), ensuring that the behavior of 
the structure to be controlled is within a fixed distance from a stability 
point. 

viLy =VmaxH
( (
− zT)PBifi

)
(8) 

Here, Vmax is the maximum voltage that can be supplied to the control 
device; H, the Heaviside step function; viLy , the control voltage supplied 
to the control device; fi, the current control force of the ith control device; 
P, the positive definite matrix; B, the position matrix of the control de
vice; and z, the hysteresis element derived from Eq. (4). The current 
control force is measured using a load cell attached to each damper. Eq. 
(8) is determined by the derivation of the Lyapunov function in Eq. (9). 

V(z)=
1
2

z2
p (9) 

Fig. 4. MR damper performance test results.  

Table 4 
Parameters that control the shape of the loop.  

AMR  βMR  γMR  

45.48 0.56 1.38  

Table 5 
Bouc–Wen model parameters.  

αẋMR0  αzMR0  

14 N⋅sec/mm  7.0 N/mm  
αẋMR1  αzMR1  

13.1 N⋅ sec/ mm.Amp  51.9 N/mm.Amp  
αẋMR2  αzMR2  

− 5.7 N⋅ sec/ mm.

Amp2  
− 10.3 N/mm.Amp2   

Fig. 5. Comparison of MR damper model and performance test results.  

G. Heo et al.                                                                                                                                                                                                                                     



Soil Dynamics and Earthquake Engineering 143 (2021) 106659

7

If Eq. (9) is derived, ultimately, only zTPBf remains as an adjustable 
term that can produce the control effect. Here, zp is the P-norm defined 
in Eq. (10). 

zp =
[
zT Pz

]1/2 (10) 

The clipped-optimal control algorithm controls the vibration by 
adjusting the controller’s control force so that it satisfies the calculated 
required control force (fc). Specifically, the voltage supplied to the 
control device is adjusted according to Eq. (11) so that the control force 
created by the current control device satisfies the calculated control 
force that is required for the bridge using the designed linear optimal 
controller (Kc(s)). 

viCl =VmaxH({fci − fi}fi) (11) 

Here, Vmax is the maximum voltage that can be supplied to the control 
device; H, the Heaviside step function; viCl , the control voltage supplied 
to the control device; and fci, the ith control device’s required control 
force. The control force required to control the vibration of the bridge is 
calculated as 

fci =L− 1
{

− Kc(s)L
{

y
fi

}}

(12) 

Here, L( ⋅)is the Laplace transform operator and y, the structure’s 
measured response. 

3.4. Hybrid control algorithm 

As discussed in the introduction, both the Lyapunov and the clipped- 
optimal control algorithms clearly work well in the linear system. 
However, when some random load is applied, as in an earthquake, vi
bration isolation devices behave in a nonlinear manner. In particular, 
when a bridge superstructure comprises multiple spans connected by 
MR dampers to control bridge vibrations, it can structurally behave in a 
nonlinear manner. Therefore, to apply the Lyapunov and clipped- 
optimal control algorithms, nonlinear behaviors were linearized by a 
stochastic linearization strategy (see 2.1 and Eqs. (1)–(4)). However, 
these two control algorithms have only a limited capacity for controlling 
multispan bridges owing to their control features and specific ap
proaches; in particular, the clipped-optimal control algorithm tends to 
stabilize forces whereas the Lyapunov algorithm tends to stabilize the 
system itself. Specifically, because the signals are limited to only 0 (off) 
and 1 (on), they are inherently limited for the control of structural 
nonlinear behaviors. Therefore, we developed a hybrid control algo
rithm specially for nonlinear behaviors after linearizing them. It com
bines the system-stabilization capability of the Lyapunov control 
algorithm with the force-stabilization capability of the clipped-optimal 
control algorithm; at the same time, it enables the control device to 
calculate a median value in the case where these two algorithms 
contradict each other during control. 

viComp =

⎧
⎨

⎩

0, if viLy + viCl = 0
0.5, if viLy + viCl = 1
1, if viLy + viCl = 2

(13) 

Here, viComp is the hybrid control voltage that is produced according to 
the relational conditions, and viLy and viCl are the control voltages that are 
calculated by the Lyapunov control algorithm and the clipped-optimal 
control algorithm, respectively. In the control algorithm given by Eqs. 
(13) and (0) is produced as the calculation result of the two algorithms if 
both algorithms determine that control is not needed, 0.5 is produced if 
only one of the two algorithms determines that control is needed, and 1 
is produced if both algorithms determine that control is needed. In other 
words, a 0.5 intermediate control signal is added to the control signals, 
which were limited to 0 and 1. This step minimizes the excessive 
response errors that can occur in one of the two algorithms. When the 
two algorithms have matching opinions, they are 100% reliable, and a 

signal of 0 or 1 is produced. 
Fig. 6(a) shows the flow of the developed control algorithm. First, the 

structure response (x, ẍ) and current control forces (fi) due to external 
forces are measured. Next, the clipped-optimal control algorithm and 
the Lyapunov control algorithm are operated on the basis of the struc
ture response and the current control forces, and the judgment result of 
each algorithm is obtained as the output. Here, the required control 
force of the clipped-optimal control algorithm and the hysteresis 
element vector of the Lyapunov control algorithm are obtained through 
the linear optimal controller and observer by using Eq. (1) based on 
stochastic linearization, respectively Finally, the current for controlling 
the MR damper is output in accordance with the control condition of the 
hybrid control algorithm given by Eq. (13). To experimentally evaluate 
the control performance, the developed control algorithm is pro
grammed with Matlab and Simulink as shown in Fig. 6(b). 

In Fig. 6(b), the left yellow block is the response measured from the 
structure; the gray block is the linear optimal controller and the 
observer; the green block is the clipped-optimal control algorithm; and 
the cyan block is the Lyapunov control algorithm. 

4. Real-time drift control test 

4.1. Configuration of real-time drift control system 

To experimentally evaluate the performance of the hybrid control 
algorithm that was developed to reduce drift in multispan isolated 
bridges, the multispan isolated bridge model shown in Fig. 2 was built as 
shown in Fig. 7. 

Fig. 7(a) shows the multispan bridge behavior caused by an external 
force in the situation where the control device is not being used. As 
shown in this figure, span B is the middle part and has a relatively large 
mass, and it collides with spans A and C owing to the large drift caused 
by the external force. Fig. 7(b) shows the bridge behavior caused by the 
external force in the situation where two adjacent spans are connected 
by a control device. When the control device is being used, if sufficient 
control is achieved, a separation distance is maintained between the 
three spans and they do not collide with each other. Accordingly, the 
selected MR dampers were used between two adjacent spans, as shown 
in Fig. 7(c). 

To effectively control vibrations in a structure by using the MR 
damper semiactive control device, it is necessary to have a measurement 
system that can capture the current state of the structure, an interme
diate processing device that can analyze the measured data and deter
mine whether or not control is applied, and a control system that 
controls the MR dampers based on the signal produced depending on 
whether or not control is applied. This study used a dSPACE CP1103 
measurement and control system for the input of signals measured from 
the structure and the output of signals sent to the control system. The 
special-use program Control Desk was used to run dSPACE CP1103, and 
the Matlab and Simulink programs were used to implement the mea
surement and control logic. To measure the structure’s response to an 
external force, this study used a Dytran 3134D accelerometer and a KTR- 
B-100 mm displacement sensor (Minor Tech). To measure the current 
control force of the MR damper, a DBBP-2t load cell (Bongshin) was 
used. To control the MR damper, a PMC 18-3A DC power supply 
(KIKUSUI) was used. Tables 6 and 7 show details of the software and 
hardware used in the tests, respectively. 

4.2. Real-time drift control test conditions 

To evaluate the performance of the hybrid algorithm that was 
developed to effectively reduce drift in multispan isolated bridges, two 
shaking tables (MST) from Korea’s Seismic Simulation Test Center were 
used. Preparatory tests were performed to confirm that the shaking ta
bles were synchronized before performing the real-time drift control 
tests. Fig. 8 shows a graph that compares the data measured after 
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running the two shaking tables by using an external force that was 
equivalent to 40% of the Kobe seismic load (i.e., a load of PGA 0.821 g 
measured by the KJMA observation center in 1995). 

As shown in Fig. 8, there were parts where very small errors occurred 
in the two shaking tables. However, the error was found to have a slight 
effect on the test results, and the experiment was continued. The per
formance evaluation test of the developed hybrid control algorithm was 
divided into a basic structure state in which no control device was used, 

a passive state in which a control device was used but no current was 
supplied, single control states in which the Lyapunov and clipped- 
optimal control algorithms were individually used, and a state in 
which the developed hybrid control algorithm was used. As shown in 
Fig. 8, 40% of the Kobe seismic load was used as the input seismic load, 
considering the structural damage in the basic structure state when the 
tests were performed. 

4.3. Analysis of results from real-time drift control tests 

In the real-time drift control tests, the shaking table that held the 
multispan isolated bridge was moved by a signal that was equivalent to 

Fig. 6. Hybrid control algorithm.  

Fig. 7. Multispan isolated bridges.  

Table 6 
Software for drift control test.  

Items Software 

Control Source Coding Matlab 8.1.0.604 (R2013a) 
Control Law Programming Matlab Simulink 

Control GUI Design Control Desk for dSPACE 1103  

Table 7 
Hardware for drift control test.  

Items Hardware 

Measurement & Control System dSPACE CP1103 
Control Device RD-8040-1 (MR Damper) 

PMC-18-3A (DC Power Supply) 
Sensor Acceleration 3134D 

Displacement Meter KTR-B-100 mm 
NSC30-10 (Power Supply) 

Load Cell DBBP-2t 
DPM-612A (Strain Amplifier)  Fig. 8. Synchronization of shaking tables.  
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40% of the Kobe seismic load, and the measured signals were compared. 
The graph in Fig. 9 shows a comparison of the acceleration, displace
ment, and relative displacement response in the basic structure state and 
the passive state in which the MR damper is used but no current is 
supplied. 

As shown in Fig. 9, Spans A and C of the target bridges showed 
slightly different movements owing to production and installation er
rors. Spans A and B as well as spans B and C of the target bridges showed 
pounding at different times. This amplified the behavior difference be
tween spans A and C. There was no significant difference in responses 
between the basic structure state and the state in which the adjacent 
bridge superstructure elements were simply connected by the MR 
damper. In particular, it was confirmed that the momentary increases in 
acceleration response that occurred owing to the pounding between 
adjacent superstructure elements in the basic structure state also 
occurred in the passive state. Figs. 10 and 11 show graphs in which the 
basic structure state and the passive state are compared with states in 
which a current of 2 A was supplied to the MR damper control using the 
Lyapunov control algorithm and the clipped-optimal control algorithm, 
respectively. 

As shown in Figs. 10 and 11, the results obtained using each of the 
control algorithms confirmed that there was a reduction in the 
momentary increase in acceleration response caused by the pounding 
between adjacent bridge superstructure elements that occurred in the 
basic structure state and the passive control algorithm state. However, 
when the Lyapunov control algorithm shown in Fig. 9 was applied, the 
reduction in pounding between spans A and B was lower than that be
tween spans B and C. Further, when the clipped-optimal control algo
rithm was applied, the reduction in pounding between spans B and C 
was lower than that between spans A and B. To determine why these 
results were obtained, the force–displacement responses of each damper 
were compared, and the results are shown in Fig. 12. 

As shown in Fig. 12, the MR damper that connects spans A and B 
produces a large control force in the clipped-optimal control algorithm 
state, and the MR damper that connects spans B and C produces a large 
control force in the Lyapunov control algorithm state. This behavior of 
the multispan isolated bridge was determined to occur when the 
external force acted upon it because a large force was produced in the 
MR damper that connects spans A and B because the relatively heavy 
span B supported the drift of span A. The clipped-optimal control al
gorithm reacted sensitively to this force and produced a large control 
force because clipped-optimal control mainly plays the role of reducing 
the external force of the MR damper. In the Lyapunov control algorithm, 
resistance to the drift of span A occurred because of the support of span 
B. This was determined to occur because the drift of span C was large, 

and a large control force was produced to stabilize it because the Lya
punov control algorithm stabilizes the structural system. The graph in 
Fig. 13 shows the test results for the hybrid algorithm that was devel
oped to compensate for the disadvantages of the individual algorithms. 

The graph in Fig. 13(a) shows a comparison of the test results of the 
hybrid control algorithm with those of the Lyapunov control algorithm 
and the clipped-optimal control algorithm. As seen in this figure, the 
hybrid control algorithm achieved satisfactory performance in reducing 
the pounding response between spans A and B, for which the Lyapunov 
control algorithm showed inadequate performance, and it achieved 
satisfactory performance in reducing the pounding response between 
spans B and C, for which the clipped-optimal control algorithm showed 
inadequate performance. These results were also confirmed from the 
force–displacement response graph shown in Fig. 13(b). The hybrid 
control algorithm achieved similar performance to that of the clipped- 
optimal control algorithm, which showed excellent performance at 
spans A and B, and it achieved similar performance to the Lyapunov 
control algorithm, which showed excellent performance at spans B and 
C. Tables 8 and 9 show comparisons of the maximum values of the ac
celeration, displacement, and relative displacement responses to quan
titatively confirm the test results. 

Tables 8 and 9 show the maximum values of the acceleration and 
displacement responses according to each test condition and the degree 
of damping compared with the basic structure state. The rate of reduc
tion in the displacement and acceleration responses was very small in 
the state in which the dampers were applied to the basic structure but 
current was not supplied. However, there was a difference in the per
formance of each control algorithm according to the current supplied to 
the Lyapunov and clipped-optimal control algorithms. The damping of 
the acceleration response was confirmed to be ~50% or more in span A, 
~30% or more in span B, and ~40% or more in span C. This damping of 
the acceleration response implies damping of the pounding force be
tween adjacent superstructure elements. Further, the damping of the 
displacement response was 40% or more in span A, ~20% or more in 
span B, and ~25% or more in span C. These results imply that the 
strength of the pounding between adjacent superstructure elements is 
adjusted by the damping of the drift of the superstructure elements. The 
relative displacement responses shown in Table 10 have a direct effect 
on pounding. In the case of the Lyapunov control algorithm, the relative 
displacement reduction performance of spans B and C was ~10% higher 
than that of spans A and B. In the case of the clipped-optimal control 
algorithm, the relative displacement reduction performance in spans A 
and B was ~5% higher than that of spans B and C. This difference in the 
relative displacement reductions was determined to be due to the dif
ference between the essential goals of each algorithm. The hybrid 

Fig. 9. Drift control test results: uncontrolled vs. passive 0 A.  
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control algorithm was developed to compensate for these differences in 
each control algorithm, and it showed the best reduction performance 
with respect to the acceleration and displacement of each superstructure 
element. As shown in Table 10, the hybrid control algorithm reduced the 
relative displacement between spans A and B by 50% than in the case 
when the Lyapunov algorithm alone was adopted. In addition, it reduced 
the relative displacement between spans B and C by 33% than in the case 
when the clipped-optimal algorithm alone was adopted. The relative 
displacement responses are directly related to pounding, and the hybrid 
control algorithm equally reduced the maximum relative displacement 
of each connecting section. 

5. Conclusion 

This study developed a hybrid control algorithm and proved its 
effectiveness through experiments in which a model bridge was placed 
on a shaking table to effectively control the drift occurring in the su
perstructure of an isolated multispan bridge. The following conclusions 
can be drawn from this study.  

1. We calculated the optimal control force for an MR damper to prevent 
both too much force from causing the spans to work like a unified 
structure and too little force from causing pounding between spans. 

Fig. 10. Drift control test results: uncontrolled vs. Lyapunov control.  

Fig. 11. Drift control test results: uncontrolled vs. clipped-optimal control.  

Fig. 12. Force–displacement curve: Lyapunov control vs. clipped-optimal control.  
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2. We developed a hybrid control algorithm that combined the ad
vantages of the Lyapunov and clipped-optimal algorithms to add a 
median to the minimum and maximum forces of the MR damper. 
Through shaking table tests, this algorithm was proved to be effec
tive in reducing the acceleration response by up to 70% as well as in 

reducing the relative displacement, and it thereby controlled the 
drift of an isolated multispan bridge. 

Therefore, the hybrid control algorithm developed in this study was 
verified to effectively stabilize the whole structure by controlling the 

Fig. 13. Performance comparison of hybrid control algorithm.  

Table 8 
Comparison of acceleration.   

Span A Span B Span C 

Max. (g) Variation of Max. (%) Max. (g) Variation of Max. (%) Max. (g) Variation of Max. (%) 

Uncontrolled 7.5399 – 6.0459 – 7.8979 – 
Passive 0 A 6.9580 − 7.7 6.0842 +0.63 6.3669 − 19.38 
Lyapunov 3.6341 − 51.80 4.0021 − 33.80 3.4705 − 56.06 

Clipped OPT. 1.1347 − 84.95 3.8323 − 36.61 4.3536 − 44.88 
Lyap. & Clip. 0.9216 − 87.78 1.3693 − 77.35 2.0415 − 74.15  

Table 9 
Comparison of displacement.   

Span A Span B Span C 

Max. (mm)  Variation of Max. (%) Max. (mm)  Variation of Max. (%) Max. (mm)  Variation of Max. (%) 

Uncontrolled 30.3747 – 62.2123 – 15.5922 – 
Passive 0 A 21.0191 − 30.80 61.2885 − 1.48 14.3133 − 8.20 
Lyapunov 17.5110 − 42.35 50.3017 − 19.15 11.5321 − 26.04 

Clipped OPT. 14.5555 − 52.24 48.1933 − 22.53 11.7881 − 24.40 
Lyap. & Clip. 15.5212 − 48.90 47.8181 − 23.14 10.7538 − 31.03  
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drift of the superstructure of multispan bridges. 

CRediT authorship contribution statement 

G. Heo: Supervision, Methodology, Investigation. S. Seo: Formal 
analysis, Validation. S. Jeon: Test, Visualization. C. Kim: Conceptuali
zation, Software, Writing - original draft. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This research was supported by National Research Foundation of 
Korea through funding from the Ministry of Education (Project Nos. 
NRF-2018R1A6A1A03025542 and NRF-2019R1I1A1A01049701). The 
authors are grateful to the National Research Foundation for making this 
research possible. 

References 

[1] Kasai K, Maison BF. Building pounding damage during the 1989 Loma Prieta 
earthquake. Eng Struct 1997;19(3):195–207. 

[2] Lew HS, Coper J, Hacopian S, Hays W. The january 17, 1994, Northridge 
earthquake, California, vol. 871. National Institute of Standards and Technology; 
1994. p. 375–426. 

[3] Muthukumar S, DesRoches R. A Hertz contact model with non-linear damping for 
pounding simulation. Earthq Eng Struct Dynam 2006;35:811–28. 

[4] Jeon JS, Seo YD, Choi HS, Park JB. Examples of bridge damage due to earthquakes 
in Korea. Proc EESK Conf 2018:25–6. 

[5] Kawashima K, Matsuzaki H. Damage of road bridges by 2011 Great East Japan 
(Tohoku) earthquake. Lisboa: 15th World Conference on Earthquake Engineering; 
2012. 

[6] Domaneschi M, Martinelli L. Earthquake-resilience-based control solutions for the 
extended benchmark cable-stayed bridge. J Struct Eng 2016;142(8):1–9. 

[7] Shehata E, Raheem A. Pounding mitigation and unseating prevention at expansion 
joints of isolated multi-span bridges. Eng Struct 2009;31:2345–56. 

[8] Soong TT, Dargush GF. Passive energy dissipation systems in structural 
engineering. Wiley; 1997. 

[9] Ruangrassamee A, Kawashima K. Experimental study on semi-active control of 
bridges with use of magnetorheological damper. J Struct Eng 2001;47A:639–50. 

[10] Sahasrabudhe SS, Nagarajaiah S. Semi-active control of sliding isolated bridges 
using MR dampers: an experimental and numerical study. Earthq Eng Struct 
Dynam 2005;34:965–83. 

[11] Nagarajaiah S, Narasimhan S, Agrawal A, Tan P. Benchmark structural control 
problem for a seismically excited highway bridge—Part III: phase II Sample 
controller for the fully base-isolated case. Struct Contr Health Monit 2009;16: 
549–63. 

[12] Pourzeynali S, Bahar A. Vertical vibration control of suspension bridges subjected 
to earthquake by semi-active MR dampers. Sharif Univ Technol 2017;24(2): 
439–51. 

[13] Wang Q, Dong X, Li L, Yang Q, Ou J. Wind-induced vibration control of a 
constructing bridge tower with MRE variable stiffness tuned mass damper. Smart 
Mater Struct 2020;29(4). 

[14] Bathaei A, Ramezani M, Ghorbani-Tanha AK. Type-1 and Type-2 fuzzy logic 
control algorithms for semi-active seismic vibration control of the college urban 
bridge using MR dampers. Civ Eng Infrastruct J 2017;50(2):333–51. 

[15] Guo A, Li Z, Li H, Ou J. Experimental and analytical study on pounding reduction 
of base-isolated highway bridges using MR dampers. Earthq Eng Struct Dynam 
2009;38:1307–33. 

[16] Sheikh MN, Xiong J, Li WH. Reduction of seismic pounding effects of base-isolated 
RC highway bridges using MR damper. Struct Eng Mech 2012;41(6):791–803. 

[17] Heo G, Kim C, Jeon S, Lee C, Jeon J. A hybrid seismic response control to improve 
performance of a two-span bridge. Struct Eng Mech 2017;61(5):675–84. 

[18] Ali SF, Ramaswamy A. Testing and modeling of MR damper and its application to 
SDOF systems using integral backstepping technique. J Dyn Syst Meas Contr 2009; 
131(2). 

[19] Achour-Olivier F, Afra H. Lyapunov based control algorithm for seismically excited 
buildings. Period Polytech Civ Eng 2016;60(3):413–20. 

[20] Ali SF, Ramaswamy A. Design optimization of active and passive structural control 
systems. Info Sci Ref 2013:300–32. 

[21] Basili M, De Angelis M. Optimal passive control of adjacent structures 
interconnected with nonlinear hysteretic devices. J Sound Vib 2007;301:106–25. 

[22] El-Khoury O, Kim C, Shafieezadeh A, Hur JE, Heo GH. Experimental study of the 
semi-active control of a nonlinear two-span bridge using stochastic optimal 
polynomial control. Smart Mater Struct 2015;24:1–15. 

[23] El-Khoury O, Kim C, Shafieezadeh A, Hur JE, Heo GH. Mitigation of the seismic 
response of multi-span bridges using MR dampers: experimental study of a new 
SMC-based controller. J Vib Contr 2016;24(1):83–99. 

[24] Heo G, Kim C, Jeon S, Lee C, Seo S. A study on a MR damping system with lumped 
mass for a two-span bridge to diminish its earthquake-induced longitudinal 
vibration. Soil Dynam Earthq Eng 2017;92:312–29. 

[25] Leitmann G. Semi active control for vibration attenuation. J Intell Mater Syst Struct 
1994;5:841–6. 

[26] Dyke SJ, Spencer Jr BF, Sain MK, Carlson JD. Experimental verification of 
semiactive structural control strategies using acceleration feedback. Proceeding of 
the 3rd international conference on motion and vibration control, vol. 3; 1996. 
p. 291–6. 

Table 10 
Comparison of relative displacement.   

Relative Dis. A-B Relative Dis. B–C 

Max. (mm)  Variation of Max. (%) Max. (mm)  Variation of Max. (%) 

Uncontrolled 50.411 – 54.287 – 
Passive 0 A 49.181 − 2.44 53.151 − 2.09 
Lyapunov 44.942 − 10.85 43.721 − 19.46 

Clipped OPT. 39.829 − 20.99 45.657 − 15.90 
Lyap. & Clip. 42.061 − 16.56 43.304 − 20.23  

G. Heo et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0267-7261(21)00081-6/sref1
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref1
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref2
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref2
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref2
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref3
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref3
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref4
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref4
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref5
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref5
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref5
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref6
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref6
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref7
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref7
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref8
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref8
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref9
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref9
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref10
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref10
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref10
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref11
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref11
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref11
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref11
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref12
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref12
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref12
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref13
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref13
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref13
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref14
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref14
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref14
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref15
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref15
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref15
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref16
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref16
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref17
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref17
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref18
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref18
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref18
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref19
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref19
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref20
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref20
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref21
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref21
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref22
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref22
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref22
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref23
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref23
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref23
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref24
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref24
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref24
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref25
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref25
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref26
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref26
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref26
http://refhub.elsevier.com/S0267-7261(21)00081-6/sref26

	Development of a hybrid control algorithm for effective reduction of drift in multispan isolated bridges
	1 Introduction
	2 Multispan bridge drift control methods and assumptions
	2.1 Multispan isolated bridge drift control methods
	2.2 Assumptions of drift control for a multispan bridge

	3 Relationship between semiactive control device and control algorithm
	3.1 Calculating optimal control force
	3.2 Semiactive control device
	3.3 Control algorithm
	3.4 Hybrid control algorithm

	4 Real-time drift control test
	4.1 Configuration of real-time drift control system
	4.2 Real-time drift control test conditions
	4.3 Analysis of results from real-time drift control tests

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


