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A B S T R A C T

Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge
inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge
classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes
that dictate the statistically different performances of bridges is often challenging. These attributes also vary
depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility
methodology using artificial neural network to generate bridge-specific fragility curves without grouping the
bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on
the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion
intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the
seismic fragility of this bridge class.

1. Introduction

One common approach to assess the seismic vulnerability is through
the derivation of fragility curves. Fragility curves gives the likelihood
that a structure or its components will reach a certain level of damage
for a given ground motion intensity measure (IM). The usual strategy
adopted to generate bridge class fragilities is to bin the bridges that
have statistically similar performances and sample bridge classes in
each group accounting for the variation in structural, material, and
geometric attributes, and generate the fragility curves.

Numerous studies have been carried out to group bridge classes and
suggest their fragility relationships [1–9]. HAZUS [1] is the most
comprehensive document in grouping the bridge classes and suggested
fragility relationships. However, the fragility relationships suggested in
HAZUS are based on simple two-dimensional (2-D) analyses of bridges
and do not reflect the material, structural, and geometric uncertainties.
Mangalathu et al. [2] outlined the limitations of HAZUS fragilities such
as the grouping of bridge classes based on engineering judgement and
the use of capacity spectrum method to generate the fragility curves.
Mackie and Stojadinovic [3] partially addressed the limitation of
HAZUS and suggested fragility relationships for some specific bridge
classes accounting for the variation in geometric properties. Banerjee
and Shinozuka [4,5] suggested fragility relationships for bridge classes

by grouping the bridge classes based on the number of spans (single
versus multiple), bent type (single versus multiple), and skew angle
(negligible versus significant, chosen to be>30°). Ramanathan [6]
classified the bridge classes in California based on the superstructure
type, number of columns, design era, and abutment configurations, and
suggested their fragility relationships. As noted by Mangalathu et al.
[7], the above mentioned studies classified the bridge classes based on
the engineering judgment which is subjective. These authors suggested
a performance-based grouping based on a statistical technique called
analysis of covariance. However, the scope of their study was limited to
grouping bridge classes, not the generation of fragility curves. Manga-
lathu [8] suggested fragility relationships of California concrete bridges
after grouping the bridge classes based on the structural response via
the analysis of variance. This author classified the bridge classes based
on the abutment type, pier-type, number of spans, column cross-section,
span continuity, and seismic design. In all the aforementioned studies,
the fragility relationships were conditioned only on IM. However, re-
cent researches [10–13] highlighted that the fragility relationships
conditioned on a single parameter (IM) might not be enough to capture
uncertainties associated with other input parameters. The single-para-
meter fragility curves also suffer the limitation that it requires extensive
re-simulation to update the fragility curves for a new set of input
parameters.
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To mitigate the limitations of traditional single-dimensional fragi-
lity curves, recent researches [10–17] suggested multi-dimensional
fragility curves, i.e., the fragility relationships are conditioned on input
parameters including uncertain geometric, material, and structural
parameters, in addition to IM. The multi-parameter fragility curves are
generated using logistic regression on the demand-to-capacity esti-
mates. However, the multi-parameter fragility curves are generated
after an initial classification of bridges based on either engineering
judgment or statistical performance. The performance based grouping
of bridge classes is not always possible if one would like to perform the
regional risk assessment of bridges with less computational efforts. As
noted by Mangalathu [8], bridge attributes that dictate the bridge
performance vary depending on the component under consideration,
and the generation of fragility relations for the refined bridge group
accounting for all the attributes is computationally expensive.

A few researchers [18–22] applied artificial neural network (ANN)
in the field of structural engineering to estimate structural damage and
seismic fragilities. ANN is one of machine learning techniques on the
basis of a large connection of simple units called neurons, similar to
axons in human brain [23]. It consists of an input layer of neurons (or
nodes, units), hidden layers of neurons, and a final layer of output
neurons. ANN has the capability in capturing the nonlinear behavior,
and has an efficient input-out mapping. [23]. Compared to other ma-
chine learning methods such as Random Forest, ANN is robust in the
presence of noisy or missing inputs and have the adaptively to learn in
changing environment [23]. The comparison of the efficiency of ANN
with other machine learning techniques is beyond the scope of the
current study. Lagaros and Fragiadakis [18] evaluated the application
of neural network–based methodology for a rapid estimation of the
seismic demand of steel frames. Lautour and Omenzetter [19] explored
the application of ANN in evaluating damage indices of 2-D reinforced
concrete frames. Mitropoulou and Papadrakakis [20] generated fragi-
lity curves for buildings using ANN. The research by these authors
pointed out that the computation time in the traditional fragility ana-
lysis can be reduced significantly with the use of ANN. Lu and Zhang
[21] compared the fragility curve of steel buildings obtained by ANN
and finite element analysis (FEA). These authors noted that if a suffi-
cient amount of training data is available (with a set of 500 data
points), ANN can produce accurate estimates of fragilities with less
computational time compared to FEA. Pang et al. [22] simulated the
median value and standard deviation of incremental dynamic analysis
curves at various levels of IM using ANN.

This research employs ANN to generate fragility curves for bridge
classes in California. Unlike previous studies on the application of
machine learning techniques for bridge fragilities [8,10], this research
explores the use of ANN without grouping bridge classes based on skew
angle, number of spans and columns per bent. Unlike previous studies
on the application of machine learning techniques for bridge fragilities
[8,10], this research explores the use of ANN without grouping bridge
classes based on skew angle, number of spans and columns per bent. Per
Mangalathu [8], eight bridges classes with statistically different per-
formances are possible with these combinations (the number of col-
umns per bent: one versus two, abutment skewness: straight versus
skewed, the number of spans: two-span versus three-to-four-span).
Especially, skewed bridges can be classified into five different bins
based on their response: low (0–15°), medium (15–30°), high (30–45°),
very high (45–60°), and extreme (60–77°) [24]. The establishment of a
predictive equation between uncertain input (modeling) parameters
and output (structural response) parameter enable to perform the rapid
risk assessment and generation of bridge-specific fragility curves for a
set of input parameters. To examine the capability of ANN, this research
selects two-span, three-span, and four-span skewed box-girder bridges
with single-column and two-column bents and with seat abutments.
Thus, 20 (five levels of skew angle× two types of column bent× two
numbers of span) bridge classes are possible with these combinations.
The skewed bridges occupy more than 60% of the California bridge

inventory, and their risk assessment is getting considerable attention
these days [24–28]. The scope of the study is limited to seismically
designed (constructed after 1970) pre-stressed concrete box-girder
bridges with seat abutments.

2. Proposed probabilistic seismic demand models

2.1. Traditional probabilistic seismic demand models

The probabilistic seismic demand model (PSDM) is a linear regres-
sion of pairs of input (demand, D) and output (IM) variables in the log-
transformed space. Fig. 1 shows the scatter plot of the seismic demand
or response (D) of a bridge group versus the IM in the logarithmic space,
along with the probability distribution of the seismic demands. Note
that the PSDM shown in the figure is single parameterized, i.e., con-
ditioned only on IM. Per Cornell et al. [29], the PSDM can be written as

= +S a b IMln( ) ln( ) ln( )d (1)

where a and b are the regression coefficients, Sd is the median estimate
of the demand in terms of IM. The coefficients a and b are obtained by
performing a linear regression analysis on D and IM pairs in the loga-
rithmic space. Dispersion, βd|IM, is evaluated based on statistical ana-
lysis of ln(D) and ln(IM) pairs:
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where di is the demand for the ith ground motion and N is the number
of dynamic analyses.

2.2. Artificial neural network for probabilistic seismic demand models

ANN is a mathematical model inspired by the organization and
functioning of biological neurons. The data from the dynamic analyses
are split randomly in this research into a training set (70%), a valida-
tion set (15%), and a test set (15%). ANN consists of the input layer,
hidden layer, and output layer, as shown in Fig. 2. Each line connecting
neurons is associated with a weight. The output (hi) of the neuron i in
the hidden layer is
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where s() is called the activation or transfer function. N is the number of
input neurons, Vij is the weights, xj is the input value, and Ti

hid is the
threshold term of hidden neurons. The activation function used in this
research is sigmoid to introduce the nonlinearity in the model [23,30]
and is defined as

=
+ −s u

e
( ) 1

1 u (4)

The network is trained with the training data to minimize the error
function in predicting the demand model, by adjusting the weights

Fig. 1. Illustration of single-parameter PSDM.
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between the connected neurons. The validation test is then performed
to find the optimal weights, and the efficiency of the network is esti-
mated using the test set. The input parameters used here consist of
categorical variables (e.g., the number of columns per bent, backfill
type), numerical variables (e.g., the number of spans, the number of
columns), and continuous variables (e.g., span length, concrete com-
pressive strength). The output of ANN is the seismic demand of bridge
components. The efficiency of ANN depends on the number of hidden
layers and neurons. Following the recommendation of Wang [30], one
hidden layer with 10 neurons is used in this research. A sensitivity
study showed that adding more hidden layers and increasing neurons in
the hidden layer beyond 10 does not affect the results, and thus 10
neurons are used in this research. Interested readers are directed to
Haykin [23] for a more detailed discussion on the requirements of the
number of hidden layers and neurons.

To evaluate the efficiency of ANN compared to the traditional
single-parameter fragility analysis, two case studies have been per-
formed. The first case study, two-span bridges with seat abutments are
considered to examine the comparison of ANN-based demand models
and single parameter PSDMs. Per Mangalathu [8], two bridge classes
are possible with the selected case study based on the number of col-
umns per bent (1 col bridge and 2 col bridge, hereafter). The initial
objective of this study is to check whether ANN approach can predict
the demand models without separating the bridge classes. In the second
case study, the entire simulation data of all types of the selected bridges
are used to compare the efficiency of ANN. Such a study helps to
identify whether ANN can possibly avoid the traditional grouping
methodology for the generation of fragility curves.

3. Description of bridge structures and assumption of numerical
modeling

3.1. Subject bridge class and numerical modeling technique

This research selects two-span, three-span, and four-span concrete
box-girder bridges with single-column or two-column bents, and resting
on seat abutments. The selected bridges are the typical configuration of
concrete bridges in California [8]. A typical layout of their numerical
bridge model is shown in Fig. 3, which is created in OpenSees [31]. The
decks are modeled with elastic beam-column elements because it would
be expected to remain elastic during earthquakes. The effective stiffness
for prestressed concrete decks is defined as the gross stiffness (no
concrete cracking). The torsional rigidity for a cellular deck is calcu-
lated using the rational shear flow theory. The transverse deck elements
are modeled using elastic (rigid and massless) beam-column elements to
represent the diaphragm of the decks and expansion joints. The deck
elements are connected to the columns using rigid elements to ensure
the moment and force transfer between adjacent components. Dis-
placement-based beam-column elements with fiber-defined cross-sec-
tions are used in this study to model the columns. Fiber cross-sections
have the distinct advantage of specification of unique material prop-
erties for different locations across a member’s cross-section. In the
fiber sections (Fig. 3), the Hysteretic material model is employed to si-
mulate the longitudinal reinforcement with a hardening factor of 0.01
and the Concrete02 material model is used to account for the tensile
behavior of unconfined (cover) and confined (core) concrete. The
confined concrete is simulated using the model of Mander et al. [32].
Foundations are modeled using lumped linear translational and rota-
tional springs (Fig. 3) and are assigned to zero-length elements at the

Fig. 2. Layout for artificial neural network for the prediction of demand model.
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center of the footings. These translational and rotational stiffnesses
were probabilistically suggested by modeling the foundation systems
and various soil profiles in the LPILE program [6] and the values are
presented in the following section.

The expansion joint between the deck and an abutment consists of
various components such as elastomeric bearings (longitudinal and
transverse), shear key (transverse), and pounding between the deck and
abutment (perpendicular to the backwall). The elastomeric bearing
resists two horizontal forces (longitudinal and transverse bridge axis)
and is assumed to be elastic–perfectly plastic and the yield force is
computed by multiplying the normal force acting on the bearing with
the coefficient of friction of the pad (Fig. 3). The pounding between the
deck and abutment restricts the compressive movement because the

pounding stiffness is very high, resulting in a little bearing deformation
in compression. The pounding is simulated using zero-length elements
defined as the material model suggested by Muthukumar and Des-
Roches [33], which is a nonlinear compression-only bilinear material
model with a gap. The direction of the zero-length elements is per-
pendicular to the backwall plane. This material model explicitly ac-
counts for the loss of hysteretic energy. The initial stiffness and second
stiffness obtained from the formulations in the Hertz model are 587 kN/
mm and 202 kN/mm, respectively, per deck width (m). The maximum
deformation is assumed to be 25mm and the yield deformation, is as-
sumed to be 10% of the maximum deformation. Two external shear
keys per abutment are used to prevent excessive transverse movement
of decks. The backbone of the shear key model follows a symmetric

Fig. 3. Computational model of skewed bridges.
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trilinear behavior with a gap, yielded from the experimental results
conducted by Silva et al. [34]. The maximum force is computed as the
product of the dead-load reaction and the acceleration per the re-
commendation of the California Department of Transportation (Cal-
trans) [8]. The yield force is assumed to be 80% of the maximum force
and the associated displacement is the gap plus 32mm. Here, the
maximum displacement is the gap plus 160mm and the corresponding
force is zero.

Additionally, the soil and pile springs are rotated with respect to the
abutment skew. To account for this abutment skew, the soil model
developed by Shamsabadi et al. [35] is modified by changing the
maximum force and soil stiffness under the assumption that the direc-
tion of the passive pressure is perpendicular to the backwall plane. This
model is a compression-only (passive action) hyperbolic material model
and the force-displacement curve depends on the backfill type (sand
versus clay). Following the work of Kaviani et al. [36], the variation
coefficient of stiffness and strength for a specified skew angle (κs) is
defined as 0.3·tan(β)/tan(60°). The upper limit of this coefficient is 0.3,
which is based on the skew angle of 60°. For example, the modified
maximum force at the acute side is the product of the maximum force of
the original model and (1+ κs). It is also assumed that the active and
transverse resistance of the abutment is contributed by the piles alone.
To capture the nonlinear behavior of the piles, the symmetric trilinear
material model is used [8]; the yield force is assumed to be half of the
maximum force; and the yield and ultimate deformation are associated
with 6mm and 25mm, respectively.

As shown in Fig. 3, the components such as the decks, transverse
decks, connection between deck and column and between column and
footing, and foundation springs are modeled using elastic material
models (they are expected to remain elastic during the earthquakes),
while other components are modeled in a nonlinear manner. Also, the
geometric nonlinearity is accounted for by including P-delta effect on
the columns. Rayleigh damping is adopted in dynamic analyses for the
first and second vibration modes. Interested readers are directed to the
Refs. [8,27] for a more detailed description on the numerical modeling
of bridge components.

3.2. Reflecting uncertainties for regional risk assessment

Different sources of uncertainties, such as geometric, material, and
system, are included in this research. Table 1 presents the mean value
(μ), standard deviation (σ), and the associated probability distribution
of various input variables used in this research. The values are de-
termined based on an extensive plan review of bridges (more than
1000) in California [8]. Especially, in the simulation process, skew
angles (θ) are uniformly distributed between 0 and 60° (1.047 rad). The
input variables are sampled within the range of parameters presented in
Table 1 via Latin Hypercube Sampling (LHS) technique to generate
samples of bridge models. The sampled values of each uncertain para-
meter are used as values of input variables in Section 2.2.

To have a wide range of ground motions with a large variation of
peak ground accelerations, this research employs the set of 160 ground
motions suggested by Baker et al. [37]. The ground motions were
proposed for assessing the seismic risk of California. All ground motions
in this set are scaled by a factor of two to have sufficient response data
of IMs higher than the probabilistic design hazard level in California.
Thus, a total of 320 ground motions are used for this research. Fol-
lowing the work of Ramanathan [6], the spectral acceleration at 1.0 s
(Sa–1.0) is adopted as the IM in this research.

Each bridge model is randomly paired with a ground motion with
two orthogonal components. One earthquake component is randomly
assigned to either the bridge longitudinal or transverse axis. A set of
dynamic analyses (320 simulations) is carried out for all bridge-earth-
quake pairs to monitor the maximum response (termed the engineering
demand parameter, EDP) of multiple bridge components. The EDPs
considered in this work are the maximum curvature ductility of

columns (μϕ), the maximum displacement of the abutments in passive
(δp in mm), active (δa in mm), and transverse (δt in mm) direction, the
maximum deformation of bearings (δb in mm), and the maximum un-
seating deformation of superstructure (δu in mm). These EDPs are re-
garded as output variables in Section 2.

Table 1
Uncertainty parameters of bridges and their probability distribution [8].

Parameter Typea Parameters Truncated limit

Mean (μ) Standard
deviation (σ)

Lower Upper

Superstructure (pre-stressed concrete)
Main-span length, Lm (m)
Two-span bridge N 41.15 10.67 22.86 70.10
Three-span and four-span
bridges

N 47.24 13.72 22.86 76.20

Ratio of approach-span to
main-span length,
(η= Ls/Lm)

N 0.75 0.2 0.4 1.0

Width of the deck, Dw (m)
Single-column bent
(three-cell deck)

N 12.80 0.61 11.58 14.02

Two-column bent (five-
cell deck)

N 17.37 2.44 15.24 20.12

Interior bent
Concrete compressive

strength, fc (MPa)
N 31.37 3.86 22.75 39.09

Rebar yield strength, fy
(MPa)

N 475.7 37.9 399.9 551.6

Column clear height, Hc

(m)
LN 7.13 1.15 5.18 9.75

Column longitudinal
reinforcement ratio, ρl

U 0.02 0.006 0.01 0.03

Column transverse
reinforcement ratio, ρt

U 0.009 0.003 0.004 0.013

Deep foundation (pile group)
Translational stiffness, Kft (kN/mm)
Single-column bent LN 350.3 0.44 140.1 875.6
Two-column bent LN 175.1 0.44 70.05 437.8

Transverse rotational stiffness, Kfr (GN-m/rad)
Single-column bent LN 9.04 0.28 3.62 22.60
Two-column bent LN 1.36 0.28 0.54 3.39

Transverse/longitudinal rotational stiffness ratio, Kr

Single-column bent LN 1.5 1.5 0.67 1.5
Two-column bent LN 1.0 1.5 0.67 1.5

Exterior bent (seat-type abutment on piles)
Abutment skew angle, β

(rad)
U 0.52 0.30 0.0 1.05

Abutment backwall height,
Ha (m)

LN 3.59 0.65 2.90 6.10

Pile stiffness, Kp (kN/mm) LN 0.124 0.045 0.058 0.234
Backfill type, BT (sand vs.

clay)
B – – – –

Bearing (elastomeric bearing)
Stiffness per deck width, Kb

(N/mm/mm)
LN 0.630 0.299 0.230 1.436

Coefficient of friction of
bearing pad, μb

N 0.3 0.1 0.1 0.5

Gap
Longitudinal (pounding), Δl

(mm)
LN 23.3 12.4 7.6 55.9

Transverse (shear key), Δt

(mm)
U 19.1 11.0 0 38.1

Other parameters
Mass factor, mf U 1.05 0.06 0.95 1.15
Damping ratio, ξ N 0.045 0.0125 0.02 0.07
Acceleration for shear key

capacity (g), ask
LN 1 0.2 0.8 1.2

Earthquake direction (fault
normal FN vs. parallel
FP), ED

B – – – –

a N=normal, LN= lognormal, U= uniform, and B=Bernoulli distribution.
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4. Application of ANN

4.1. Two-span bridge

Two-span bridges with single-column and two-column bents are
initially considered to compare the ANN approach with traditional
single parameter PSDMs. As noted by Mangalathu [8], the single-
column bent bridges have a statistically different performance in
comparison to the two-column bent bridges. It is initially evaluated by
comparing the PSDMs and its results are given in Fig. 4(a) and (c). Since
the regression coefficients of μϕ and δu are different, it can be inferred
that they have statistically different performances. The efficiency of the
traditional PSDM and ANN is evaluated by comparing their mean
square error (MSE), coefficient of correlation (R), and coefficient of
determination (R2) for the randomly assigned test set.
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where Dtest is the test set demand vector, ̂Dtest is the demand vector
predicted by ANN or linear regression for the test set, ̂D Dcov( , )test test is
the covariance of the vector ̂Dtest and Dtest , ̂σ Dtest is the standard devia-
tion of the vector ̂Dtest, σDtest is the standard deviation of the vector Dtest,
Nt is the training set, and Dtest is the mean value of the demand vector.

It is seen from Fig. 4(b) that for the curvature ductility demand (μϕ),
the ANN method can improve the R (from 0.88 to 0.95), R2 (0.79 to
0.91), and reduce the MSE (from 0.62 to 0.25) compared to the single-
parameter PSDM. A similar trend is also observed for the unseating
displacement (δu) as shown in Fig. 4(d). Although not shown here, in
general, ANN can enhance demand estimates significantly for all the
demand parameters.

4.2. Two-span, three-span and four-span bridges

As mentioned before, 20 bridge classes with statistically different
performances are possible with these bridges. The objective of this
study is to check whether ANN approach can have a good prediction
model without separating the bridge classes. The results of some se-
lected components (μϕ and δu) are presented in Fig. 5. The comparison
of ANN and linear regression data for the test set (Fig. 5(b) and (d))
shows that ANN can increase the R2 and R values significantly and
reduce the MSE. As noted before, the bridge groups in the current class
have statistically different seismic performance and the traditional
linear PSDM cannot capture the variation of structural attributes in the
response. For example, for the column curvature ductility demand (μϕ),
ANN is able to improve the R2 and R values by 25% and 13%, re-
spectively. The notable difference between ANN and linear regression is
a 73% reduction in MSE. For the unseating displacement (δu), ANN
increases the R (from 0.84 to 0.96) and R2 (from 0.75 to 0.93) values,
and decreases the MSE (from 0.29 to 0.08). The results are of particular
significance as there are lots of structural attributes (that dictate sta-
tistically different structural performance) and uncertainties. In other
words, ANN is able to have a prediction model even if there are lots of
statistically different bridge classes. Such an estimation helps to avoid
the grouping of bridge classes before developing demand models and
fragility curves intended for a regional risk assessment. In the light of
these results, a fragility methodology is suggested and is given in the
next section.

5. Fragility functions using ANN and Lasso-Logistic regression

A multi-parameter bridge-specific fragility methodology is sug-
gested in this paper based on the inference noted in Section 4. The
proposed methodology has several advantages compared to the existing
multi-parameter fragility methods [8,10–17].

(1) The proposed methodology can identify the relative importance of
input parameters on the fragility curves. Such identification helps

Fig. 4. Results of two-span seat abutment bridges: (a) PSDMs for column curvature ductility, (b) response plots for column curvature ductility for the test set, (c) PSDMs for unseating
displacement, and (d) response plots for column unseating displacement for the test set.
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decide whether the uncertainty in the input parameter should be
explicitly considered in the generation of fragility curves.

(2) Existing fragility methodology demands the grouping of bridge
classes before performing their fragility analysis. The existing
grouping methodologies are based either on judgement or compu-
tationally expensive statistical procedures. However, the proposed
ANN-based methodology does not need any grouping of bridge
classes for fragility analysis.

(3) The proposed ANN-based methodology can produce a more reliable
demand model even with the large variation in structural attributes
and uncertainties in the input parameters. The increase in the R2

value and the reduction in MSE of ANN are superior in comparison
to the existing methods.

(4) Once the trained network for a region located in a bridge is avail-
able, bridge-specific or bridge-class fragility curves can be gener-
ated with less computational efforts. The fragility curve for a spe-
cific bridge can be easily updated using the proposed ANN-based
methodology once more information is available from field in-
vestigation or database updating.

The outline of the proposed approach is given below:

Step 1: ANN-based demand estimates. (1) Bridge samples ac-
counting for the variation in material, structural, and geometric
attributes are created via LHS. Let the input parameters (x1,…, xn,
IM), and the demand parameters be (D1,…, Dn). (2) The input and
demand parameters are assigned into a training set, validation test
and test set (3) ANN using the training set and validation set is
performed and its efficiency is checked using the test set. If ANN is
not efficient, increase the efficiency by increasing hidden layers, the
number of neurons, and increase bridge samples. (4) Once the ANN
is established, generate a large number of demand estimates (N) for
each component, ki, based on their probabilistic distribution. Here,
one million samples are used.
Step 2: Capacity estimates. Probabilistic structural capacity models
(limit states) for each bridge component are assumed to be log-
normal with two parameters (median and dispersion) (see Table 2).
Note that the capacity models used here are not a function of
structural attributes unlike demand models because experimental
tests for most components (except for columns) have been limited.
The assumed distributions are used to sample N capacity values via
LHS.
Step 3: Fragility estimates. (1) The demand estimates from Step 1
are compared with the capacity values from Step 2 to obtain the

Fig. 5. Results of entire bridge simulations: (a) PSDM for column curvature ductility, (b) response plot for column curvature ductility for the test set, (c) PSDM for unseating displacement,
and (d) response plot for column unseating displacement for the test set.

Table 2
Limit state models of various bridge components [8].

Component Median value, Sc Dispersion, (βc)

Slight (LS1) Moderate (LS2) Extensive
(LS3)

Complete (LS4)

Column curvature ductility (COL) 1 5 8 11 0.35
Passive abutment response (ABP, mm) 76 254 – – 0.35
Active abutment response (ABA, mm) 38 102 – – 0.35
Transverse abutment response (ABT, mm) 25 102 – – 0.35
Bearing displacement (BRD, mm) 25 102 – – 0.35
Superstructure unseating (UST, mm) – – 254 381 0.35
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binary survival-failure (N×1) vector. (2) A lasso-logistic regression
on the survival-failure vector is conducted to determine the multi-
dimensional fragility function of the kth bridge component, condi-
tioned on the input parameters:
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where θk,0, θk,IM, and θk,j (j=1,…, n) are the logistic regression coef-
ficient of the kth bridge component. (3) As done in the component
fragility function, a lasso-logistic regression analysis is repeated to de-
rive multi-dimensional system fragility function by assuming that the
bridge failure is a series system (the system fails if one or more com-
ponents fail). (4) For a particular bridge with input parameters, x1,…,
xn, the traditional one-dimensional fragility curves can be obtained:
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where f(x1),…, f(xn) are the probability density function for parameters,
x1,…, xn.

The limit state models for the various bridge components are given
in Table 2, and are consistent with the values reported by Mangalathu
[8]. The limit states in Table 2 were determined to facilitate post-
earthquake recovery and repair evaluation of bridges. Based on the
demand models in the previous section and limit state models men-
tioned the above, fragility curves using the proposed methodology is
developed in the following section. The comparison of the fragility
curves generated by the proposed approach with the existing single-
parameter fragility curves is also given in the next section.

5.1. Traditional versus proposed fragility curves

Using multi-dimensional demand models and limit state models,
fragility curves are generated for a selected bridge class (2-span 1-col
bridges). Note that the generation of fragility curves for all the bridge
classes is beyond the scope of the current paper and the results are
demonstrated with the selected bridge class. However, the proposed
methodology can be used to generate fragility curves for any bridge
class. To examine the performance of the proposed multi-parameterized
fragility model in comparison to the traditional (single-parameter)
fragility model, the multi-parameterized fragility function becomes the
single-parameterized fragility model by integrating the uncertain
parameters as expressed in Eq. (7). Fig. 6 shows the comparison of
traditional (single-parameter, unfilled markers) and proposed fragility
curves (filled markers) for 2-span 1-col bridges with a skew angle of 20°
for selected components (bearing and column curvature ductility).

(1) The proposed methodology provides fragility curves with less dis-
persion (more reliable) as noted from the shape of the fragility
curves. The less dispersion is also quantified in the current study by

comparing the standard deviation of the fragility curves after fitting
a lognormal distribution. It is attributed to the higher R2 and lower
standard deviation associated with the demand model of the pro-
posed methodology as noted in the comparison of demand models
(Figs. 4 and 5).

(2) The reversal of trend (i.e., the failure probability of the traditional
method is low at higher IMs) might be attributed to the lower
predictive capability of the traditional single-parameter demand
model at higher IMs as noted in Figs. 4 and 5. This indicates that the
ANN method provides stiffer fragility curves, lower variation in the
fragility estimate, and a reliable estimate of the seismic demand and
failure probabilities.

(3) The difference in the median values of fragility curves (defined as
Sa-1.0 at a 50% failure probability) between the two methodologies
is 13%, 15%, 9%, and 6% for LS1 through LS4. Thus, as the limit
state becomes higher, this median difference decreases.

(4) The proposed methodology can be used to generate a bridge-spe-
cific fragility curve (for a set of input parameters) without ex-
pensive re-simulation. However, the traditional methodology ne-
cessities the generation of demand model and fragility curves with
the new set of input parameters using a time-consuming dynamic
analysis technique.

5.2. Significant parameters affecting bridge fragilities

The proposed approach helps to identify the relative impact of
various uncertain parameters on the fragility curves (Step 3 in the
proposed methodology). The regression coefficients from logistic-lasso
regression are also a measure of the sensitivity of the fragilities to the
input parameters. For example, Eq. (6) can be written as
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The left-hand side of Eq. (8) is called the log-odds and is a linear
function of the input variables (x1,…,xn, IM). The regression coeffi-
cients associated with a variable in Eq. (8) can be interpreted as the
change in log-odds (or fragility) with a unit increase in the input
variable. A positive value of the regression coefficient indicates that a
positive increase in the variable increases the failure probability of the
component/system (i.e. the system becomes more vulnerable). A ne-
gative regression coefficient shows that an increase in that variable
reduces the seismic demand. The regression coefficients of 2-span 1-col
bridges with different degrees of skew angle for the various damage
states are shown in Fig. 7. It is seen from this figure that the ground
motion IM (Sa-1.0) is the most sensitive parameter, followed by the span
length (Lm) and longitudinal reinforcement ratio (ρl), for all the demand
parameters. For all the damage states, the earthquake direction (ED),
damping ratio (ξ), acceleration for shear key capacity (ask), gap be-
tween the deck and shear key (Δt), and coefficient of bearing (µb) have a
minimal impact on all the seismic fragilities. Additionally, the skew
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Fig. 6. Comparison of traditional and proposed fragility curves for 2-span 1-col bridge with 60° skew: (a) bearing and (b) column curvature ductility.
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angle (θ) increases the vulnerability of the active abutment action
(ABA), deck unseating (UST), and bearing (BRD) of the bridges. To
obtain more insight on the effect of skew, fragility analysis is carried
out for 2-span 1-col bridges with four different skew angles and is given
in the next section.

5.3. Effect of skew angle on bridge fragility curves

Fig. 8(a) shows the system and component fragility curves for the
selected bridge with a skew angle of 20° (2-span 1-col bridges). It is seen
that the system fragility is governed by the bearing displacement (BRD)
for the selected bridge. Fig. 8(b) shows the variation of system fragility
curves with four different skew angles (0°, 20°, 40°, and 60° for the four
limit states LS1, LS2, LS3, and LS4, respectively. Note that the shift of the

Fig. 7. Relative importance of various uncertain input parameters on bridge fragilities for various damage states: (a) slight, (b) moderate, (c) extensive, and (d) complete.
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fragility curve to the right indicates the increase of the median value of
fragility curves, leading to the decrease of bridge vulnerability. It is
seen from Fig. 8(b) that an increase in skew angle makes the system
more fragile. The trend is more obvious in higher damage states and it is
consistent with the previous work on skewed bridges [27,38]. The
system fragility at higher damage states is governed by the columns and
deck unseating, which are the main bridge components causing bridge
collapse [6–10]. Although skew angle significantly affects the unseating
deformation (increase of the unseating deformation), the limit state of
the deck unseating is much higher than the seismic demand and thus
the contribution of the unseating to system vulnerability is small. Thus,
the system fragility is mainly controlled by the column fragility at
higher damage states. The generation of fragility curves for the bridge
classes with the various configurations considered in the initial part of
the paper is beyond the scope of this research, and Fig. 8 shows the
demonstration of the proposed approach to generate bridge system as
well as component fragility curves. Although the fragility curves are
shown here for some selected cases, the proposed methodology can be
used to generate fragility curves for a set of input parameters.

6. Conclusions

This paper presents the application of a machine learning technique
called artificial neural network (ANN) in the generation of seismic
fragility curves intended for regional risk assessment. Existing regional
risk assessment frameworks consist of grouping the bridge classes based
on their seismic performance and the generation of fragility curves
applicable to bridges in a specific class. However, the grouping is based
on either engineering judgment or computationally intensive statistical
analysis. Also, the grouping of bridge classes varies depending on
bridge components under consideration in the process of vulnerability
evaluation. The imperative assignment of grouping the bridge classes
before performing the regional risk assessment can be eliminated by the
ANN-based fragility methodology suggested in this research.

The application of ANN is demonstrated in this research by selecting
the two-span, three-span and four-span concrete box-girder bridges
with one-column and two-column bents and seat abutments and
varying degree of skew angles. It is noted that the ANN-based demand
model has higher coefficient of determination (R2), coefficient of cor-
relation (R) and lower mean square error on the randomly assigned test
set. The conclusion holds even if the database used to train the ANN
consists of bridge attributes that yield statistically different perfor-
mance for the bridges. Although 20 different statistically different
bridge classes are possible with the selected bridge design attributes
(based on the number of span, the number of columns per bent, the
degree of skew angles), ANN has a good predictability even if all the
attributes are mixed together to estimate demand models.

Based on the insights obtained from the comparison, an ANN-based
multi-dimensional fragility methodology is suggested in this research.

The methodology also helps to identify the relative importance of each
uncertain input parameter on the fragility curves of skewed bridge
classes for the first time. For two-span single-column bent bridges with
seat abutments, it is noted that the ground motion intensity measure
(here, Sa–1.0), span length, and column longitudinal reinforcement ratio
are the most sensitive parameters. It is also noted that the earthquake
direction, damping ratio, acceleration for shear key capacity, gap be-
tween the deck and shear key, and coefficient of bearing have a
minimal impact on all the seismic fragilities. The current study un-
derscores the fact that the traditional single-parameter fragility meth-
odology might not be sufficient to estimate the seismic vulnerability of
bridge classes. It is noted that an increase in the skew angle is detri-
mental to the bridge performance, and the vulnerability increases with
the increase in skew angle. This increased vulnerability is more pro-
nounced at the extensive and complete damage states. The proposed
multi-parameter fragility methodology helps to generate fragility
curves for a specific skew angle and a set of bridge parameters with less
computational efforts. Such estimation helps the emergency responders
and the bridge inspection team to prioritize their recovery strategies
following an earthquake.
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